
International Journal of Solids and Structures 43 (2006) 307–324

www.elsevier.com/locate/ijsolstr
Thermo-mechanical post-buckling of FGM cylindrical
panels with temperature-dependent properties

J. Yang a, K.M. Liew b, Y.F. Wu a, S. Kitipornchai a,*

a Department of Building and Construction, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
b Nanyang Centre for Supercomputing and Visualization, School of Mechanical and Production Engineering,

Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore

Received 27 August 2004; received in revised form 1 April 2005
Available online 23 May 2005
Abstract

This paper presents thermo-mechanical post-buckling analysis of cylindrical panels that are made of functionally
graded materials (FGMs) with temperature-dependent thermo-elastic properties that are graded in the direction of
thickness according to a simple power law distribution in terms of the volume fractions of the constituents. The panel
is initially stressed by an axial load, and is then subjected to a uniform temperature change. The theoretical formula-
tions are based on the classical shell theory with von-Karman–Donnell-type nonlinearity. The effect of initial geometric
imperfection is also included. A differential quadrature (DQ) based semi-analytical method combined with an iteration
process is employed to predict the critical buckling load (where it is applicable) and to trace the post-buckling equili-
brium path of FGM cylindrical panels under thermo-mechanical loading. Numerical results are presented for panels
with silicon nitride and nickel as the ceramic and metal constituents. The effects of temperature-dependent properties,
volume fraction index, axial load, initial imperfection, panel geometry and boundary conditions on the thermo-mechan-
ical post-buckling behavior are evaluated in detail through parametric studies.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Due to their unique advantages of being able to withstand severe high-temperature environment while
maintaining structural integrity, microscopically inhomogeneous functionally graded materials (FGM),
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whose material properties vary smoothly and continuously from one surface to the other by gradually
changing the volume fraction of their constituent materials, have received considerable attention in many
industries, especially in high-temperature applications such as space shuttle, aircraft, nuclear reactors and
etc., as is reflected in a great number of research papers published on this subject (e.g., Koizumi, 1993;
Tanigawa, 1995; Aboudi et al., 1997; Reddy and Chin, 1998; Noda, 1999; Reddy, 2000; Reddy and Cheng,
2001; Liew et al., 2001b, 2002, 2003a,b, 2004; Ng et al., 2002; Vel and Batra, 2002; Kitipornchai et al., 2004;
Yang and Shen, 2003a,b; Yang et al., 2003, 2004a,b). When FGMs are used as heat-shielding components
with restrains against in-plane thermal expansions or contractions, significant thermally induced strains and
stresses develop at elevated temperatures, which introduce a certain membrane pre-stress state that may ini-
tiate buckling and post-buckling (Javaheri and Eslami, 2002; Morimoto et al., 2003; Ma and Wang, 2003;
Na and Kim, 2004). It is further envisaged that considerable variation in the material properties with tem-
perature fluctuations makes the mechanical response even more complicated, which calls for a thorough
understanding of the buckling and post-buckling behavior of FGMs with temperature-dependent material
properties being taken into account.

Numerous investigations of the buckling and post-buckling responses of composite structures in thermal
environments can be found in the literature, among which those incorporating temperature-dependent
material properties are due to Chen and Chen (1989), Noor and Burton (1992a,b), Argyris and Tenek
(1995), Feldman (1996), Deng et al. (2000), Lee (2001), Shen (2001) and Singha et al. (2003). Significant
influence of temperature-dependent properties on the critical buckling temperature and post-buckling tem-
perature–deflection curves has been reported. For FGM shell structures, studies on the buckling and post-
buckling behavior under different thermal and compressive loading are limited in number. Shahsiah and
Eslami (2003) discussed the instability of FGM cylindrical shells under two types of thermal loads based
on the first order shell theory and the complete Sanders kinematic equations. Sofiyev (2004) dealt with
the stability analysis of FGM truncated conical shells that are subjected to a uniform external pressure
which is a power function of time. A Lagrange–Hamilton type variational principle was employed to solve
the governing differential equations. In his work on the stability of functionally graded shape memory alloy
sandwich panels that are subjected to the simultaneous action of a uniform temperature and a uniaxial
compression, Birman (1997) found that, at elevated temperatures, the buckling load can be increased by
using shape memory alloy (SMA) fibers in resin sleeves embedded within the core, at the midplane of
the sandwich panel. When dealing with the post-buckling behavior of FGM shells, geometrically nonlinear
kinematics will be involved and the analysis becomes much more complex. Shen (2002a,b, 2003) and Shen
and Leung (2003) conducted a series of studies on the post-buckling of FGM cylindrical shells and cylin-
drical panels under pressure or axial compression. The effect of initial geometric imperfection was included
in the analyses. Woo et al. (2003) presented an analytical solution for the post-buckling of FGM thin plates
and shallow cylindrical shells under edge compression combined with a uniform temperature field by using
mixed Fourier series. The above-mentioned work can be divided into two types: The first type (those by
Shahsiah and Eslami, 2003 and Woo et al., 2003) gave the thermal buckling or post-buckling analysis
but the temperature-dependence of the material properties was not considered whereas the second type
(those by Shen, 2002a,b, 2003; Shen and Leung, 2003; Sofiyev, 2004) used temperature-dependent material
properties in compressive buckling or post-buckling analyses only. Within the framework of classical shell
theory with von Karman–Donnell-type of kinematic nonlinearity, Shen (2004) recently investigated the
thermal post-buckling behavior of imperfect FGM cylindrical thin shells of finite length. The material pro-
perties were assumed to be nonlinearly dependent on the temperature, and a singular perturbation
technique, together with an iteration process, was used to determine the buckling temperature and post-
buckling temperature–deflection curves. Numerical results were presented for cylindrical shells that are
made from two sets of material mixtures under a uniform temperature change. In the aforementioned stud-
ies, the loading condition is either thermal or mechanical. The effect of a combined thermo-mechanical
loading was not considered. To the best of our knowledge, no studies have been reported in the literature
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that concern the post-buckling behavior of functionally graded cylindrical panels with temperature-depen-
dent material properties and subjected to a combined action of thermal and mechanical loadings.

In this paper, the thermo-mechanical buckling and post-buckling of functionally graded cylindrical thin
panels are investigated by using the classical shell theory. The material properties, which are modeled as
nonlinear functions of the temperature, are assumed to vary smoothly along the thickness direction accord-
ing to a power law distribution of the constituent materials. The theoretical formulations include the effects
of thermal loads, initial geometric imperfection, and von-Karman–Donnell-type nonlinearity which consid-
ers moderate deflections and small strains. The panel is subjected to a combined initial axial force and a
uniform temperature change. Nonlinear governing differential equations are derived in terms of transverse
deflection and stress function and are then transformed into a nonlinear algebraic system through a semi-
analytical differential quadrature-Galerkin method followed by an iteration process that determines the
buckling temperature and the post-buckling equilibrium path of FGM cylindrical panels under simply sup-
ported, clamped, or mixed boundary conditions. Numerical results are provided for cylindrical panels made
from silicon nitride and nickel to show the influence of temperature-dependent material properties, initial
axial load, material composition, geometric imperfection, panel geometry, and boundary conditions on the
thermo-mechanical buckling and post-buckling response of FGM cylindrical panels.
2. Theoretical formulations

Consider an FGM cylindrical thin panel with radius of curvature R, thickness h, axial length L and arc
length S that is subjected to an axial load px combined with a uniform temperature change DT. The panel is
made from a mixture of ceramics and metals, and is defined in a coordinate system (X,h,Z), as is shown in
Fig. 1, where X and h are in the axial and circumferential directions of the panel and Z is perpendicular to
the middle surface and points inwards. Suppose that the material composition of the panel varies smoothly
along the thickness in such a way that the inner surface is metal-rich and the outer surface is ceramic-rich by
following a simple power law in terms of the volume fractions of the constituents as
V c ¼
2Z þ h
2h

� �n

; V m ¼ 1� 2Z þ h
2h

� �n

ð1Þ
Fig. 1. Configuration and the coordinate system of the FGM cylindrical panel.
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where Vc and Vm are the ceramic and metal volume fractions and volume fraction index n is a nonnegative
integer that defines the material distribution and can be chosen to optimize the structural response. The
effective properties Peff, such as Young�s modulus E, Poisson�s ratio m, and the coefficient of thermal expan-
sion a, can be determined by
P eff ¼ Pm þ ðP c � PmÞV c ð2Þ
in which the subscripts ‘‘c’’ and ‘‘m’’ stand for ceramic and metal, respectively.
As FGMs are most commonly used in high temperature environments in which significant changes in

material properties are to be expected, the material properties of an FGM cylindrical panel are both posi-
tion and temperature dependent. For example, Young�s modulus usually decreases, and the thermal expan-
sion coefficient usually increases at elevated temperatures (Noor and Burton, 1992b). It is essential to
account for this temperature-dependence for reliable and accurate prediction of the structural response.
Without loss of generality, the material properties are expressed as the nonlinear functions of environment
temperature T (K) (Touloukian, 1967)
P ¼ P 0ðP�1T�1 þ 1þ P 1T þ P 2T 2 þ P 3T 3Þ ð3Þ
in which T = T0 + DT and T0 = 300 K (room temperature), and P0, P�1, P1, P2, and P3 are temperature-
dependent coefficients that are unique to the constituent materials. Thus, Young�s modulus E, Poisson�s
ratio m, and the coefficient of thermal expansion a can be written from Eqs. (1)–(3) as
E ¼ ðEc � EmÞ
2Z þ h
2h

� �n

þ Em

m ¼ ðmc � mmÞ
2Z þ h
2h

� �n

þ mm

a ¼ ðac � amÞ
2Z þ h
2h

� �n

þ am

ð4Þ
It is evident that E = Ec, m = mc, a = ac at Z = h/2 and E = Em, m = mm, a = am at Z = �h/2.
Let ðU ; V ;W Þ be the displacement components in the (X,h,Z) coordinates. The panel is assumed to be

initially imperfect with geometric imperfection W
�
, and W is the additional deflection that is caused by ther-

mo-mechanical loading. Denote the stress function by F ðX ; hÞ which is related to the stress resultants by

Nx ¼
o2F

R2oh2
, N h ¼

o2F

oX 2
, Nxh ¼ � o2F

R oX oh
, and introduce the following dimensionless quantities:
x ¼ X
L
; b ¼ L

R
; ðW ;W �Þ ¼ ðW ;W

�Þ
ðD�

11D
�
22A

�
11A

�
22Þ

1=4
; F ¼ Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðD�
11D

�
22Þ

p ; k1 ¼
pxR

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD�

11D
�
22Þ

p

c12 ¼
D�

12 þ 2D�
66

D�
11

; c14 ¼
D�

22

D�
11

� �1=2

; c22 ¼
A�
12 þ 0.5A�

66

A�
22

; c24 ¼
A�
11

A�
22

� �1=2

; c5 ¼
A�
12

A�
22

ðc30; c32; c34Þ ¼
1

ðD�
11D

�
22A

�
11A

�
22Þ

1=4
B�
21;B

�
11 þ B�

22 � 2B�
66;B

�
12

� �
; n ¼ L

ðD�
11D

�
22A

�
11A

�
22Þ

1=4

ðcM11; cM12; cM21Þ ¼
1

ðA�
11A

�
22D

�
11D

�
22Þ

1=4
ðB�

21;B
�
11;B

�
22Þ; ðcM13; cM22Þ ¼

1

D�
11

ðD�
21;D

�
12Þ

ð5Þ
Based on the classical shell theory and von-Karman–Donnell-type kinematic relations, the dimensionless
governing equations for an FGM cylindrical panel under mid-plane loading and a uniform temperature
change can be derived as follows:
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L11ðW Þ þ L12ðF Þ � c14bn
o2F
ox2

¼ c14b
2LðW þ W �; F Þ ð6Þ

L21ðW Þ þ L22ðF Þ � c24bn
o2W
ox2

¼ � 1

2
LðW þ 2W �;W Þ ð7Þ
where the partial differential operators are
L11ð Þ ¼ o
4

ox4
þ 2c12b

2 o
4

ox2 oh2
þ c214b

4 o
4

oh4

L12ð Þ ¼ c14 c30
o
4

ox4
þ c32b

2 o
4

ox2 oh2
þ c34b

4 o
4

oh4

� �

L21ð Þ ¼ �c24 c30
o
4

ox4
þ c32b

2 o
4

ox2 oh2
þ c34b

4 o
4

oh4

� �

L22ð Þ ¼ o4

ox4
þ 2c22b

2 o4

ox2 oh2
þ c224b

4 o4

oh4
� bn

o2

ox2

Lð Þ ¼ o2

ox2
o2

oh2
� 2

o2

ox oh
o2

ox oh
þ o2

oh2
o2

ox2

ð8Þ
The reduced stiffness elements A�
ij, B

�
ij, and D�

ij are calculated from
A� ¼ A�1; B� ¼ �A�1B; D� ¼ D� BA�1B ð9Þ
and
ðAij;Bij;DijÞ ¼
Z h=2

�h=2
ðQijÞð1; Z; Z2ÞdZ ði; j ¼ 1; 2; 6Þ ð10Þ
For FGMs with temperature-dependent material properties, the elastic stiffness Qij are dependent on both
temperature and position.

The dimensionless moment resultants (Mx,Mh,Mxh) are
Mx ¼ �c14 cM11

o2F
ox2

þ cM12b
2 o

2F

oh2

� �
� o2W

ox2
þ cM13b

2 o
2W

oh2

� �
þMT

x ð11aÞ

Mh ¼ �c14 cM21

o
2F
ox2

þ c34b
2 o

2F

oh2

� �
� cM22

o
2W
ox2

þ c214b
2 o

2W

oh2

� �
þMT

h ð11bÞ

Mxh ¼ �c14 cM31

o2F
ox2

þ cM32b
2 o

2F

oh2

� �
� cM33

o2W
ox2

þ cM34b
2 o

2W

oh2

� �
þMT

xh ð11cÞ
where
ðMT
x ;M

T
h ;M

T
xhÞ ¼ ðMT

x ;M
T

h ;M
T

xhÞL2=D�
11ðA�

11A
�
22D

�
11D

�
22Þ

1=4 ð12Þ

The thermal force resultants ðNT

x ;N
T

h ;N
T

xhÞ and moment resultants ðMT

x ;M
T

h ;M
T

xhÞ are given by
N
T

x M
T

x

N
T

h M
T

h

N
T

xh M
T

xh

2
664

3
775 ¼ �

Z h=2

�h=2

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

2
64

3
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1 0

0 1

0 0

2
64

3
75 a

a

� �
ð1; ZÞDT dZ ð13Þ
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The panel may be either simply supported or clamped on each of its edges. The associated out-of-plane
boundary conditions read
Simply supported ðSÞ : W ¼ 0; Mx ¼ 0 or Mh ¼ 0 ð14aÞ

Clamped ðCÞ : W ¼ 0;
oW
ox

¼ 0 or
oW
oh

¼ 0 ð14bÞ
Depending on the nature of constraints against mid-plane displacements, the following cases of in-plane
boundary conditions, referred to as Case 1 and Case 2 respectively, are considered in the analysis:

Case 1: The uniform axial load is applied on the curved edges x = 0,1. The panel is freely movable in the
x-direction but is immovable at the unloaded straight edges h = 0,h0.

Case 2: The panel is fully immovable at all edges.

The in-plane boundary conditions require that
o
2F

ox oh
¼ 0;

Z h0

0

o
2F

oh2
dhþ k1 ¼ 0 or V ¼ 0 ðCase 1Þ ð15aÞ
or
o
2F

ox oh
¼ 0; U ¼ 0 or V ¼ 0 ðCase 2Þ ð15bÞ
in which
U ¼ 1

b

Z h0

0

Z 1

0

b2c224
o2F

oh2
þ c5

o2F
ox2

� c24 cM12

o2W
ox2

þ c34b
2 o

2W

oh2

� ��

�c24 0.5
o
2W
ox2

þ oW
ox

oW �

ox

� �
� ðc224NT

x þ c5N
T
h Þ
	

ð16aÞ

V ¼ 1

b

Z h0

0

Z 1

0

o2F
ox2

þ c5b
2 o

2F

oh2
� c24 c30

o2W
ox2

þ cM21b
2 o

2W

oh2

� �
� c24b

2 0.5
o2W

oh2
þ oW

oh
oW �

oh

� ��

þc24nbW � ðc5NT
x þ NT

h Þ
	

ð16bÞ
where ðNT
x ;N

T
h ;N

T
xhÞ ¼ ðNT

x ;N
T

h ;N
T

xhÞL2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD�

11D
�
22Þ

p
.

It is worth noting that the thermal effect terms, which vanish in the governing equations (6) and (7) due
to the uniform distribution of DT, are present in the boundary conditions (14) and (15).
3. Solution procedures

The governing equations (6) and (7) together with the boundary conditions (14) and (15) form a nonlin-
ear partial differential system that is also dependent on temperature. A differential quadrature (DQ)-based
semi-analytical iteration approach is used to solve this nonlinear system. The essence of this method is first
to convert the partial differential equations into a set of ordinary differential equations by making use of
DQ approximation, and then to apply the Galerkin technique to obtain a nonlinear algebraic system from
which the post-buckling equilibrium path is determined through an iterative process.
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The solutions of W and F are constructed in the form of
W ¼
XM
m¼1

amW mðx; hÞ ð17aÞ

F ¼ � h2

2
kx �

x2

2
kh þ

XM
m¼1

bmF mðx; hÞ ð17bÞ
where M is the number of terms in the solution series, am and bm are the unknown constants to be deter-
mined, and kx and kh are the edge forces acting on the curved and straight edges which can be determined
from in-plane boundary conditions (15).

According to DQ rule, the kth partial derivative of an unknown function with respect to a coordinate,
say, x, at a discrete point is approximated as the linear weighted sums of its values at all of the pre-selected
sampling points along this coordinate. In this way, we have
okðW m; F mÞ
oxk






x¼xi

¼
XN
j¼1

CðkÞ
ij ðW mj; F mjÞ ð18Þ
where N is the total number of sampling points, and CðkÞ
ij are the weighting coefficients that are dependent

on the sampling grid only and can be calculated from recursive formulae given by Bert and Malik (1996)
and Liew et al. (2001a). In this study, the sampling points are unevenly distributed in x-axis as
x1 ¼ 0.0; x2 ¼ 0.0001; xj ¼
1

2
1� cos

pðj� 2Þ
N � 3

� 	
; xN�1 ¼ 0.9999; xN ¼ 1.0 ð19Þ
In Eq. (18), Wmj =Wm(xj,h) and Fmj = Fm(xj,h). They are to be further modeled in terms of orthogonal
functions that satisfy the boundary conditions at straight edges h = 0, h0 and take the form of
F mj ¼ sinðmþ 0.5Þph� sinhðmþ 0.5Þph� nmðcosðmþ 0.5Þph� coshðmþ 0.5ÞphÞ

nm ¼ sinðmþ 0.25Þp� sinhðmþ 0.25Þp
cosðmþ 0.25Þp� coshðmþ 0.25Þp ð20Þ

S–S : W mj ¼ sinmph ð21aÞ
C–C : W mj ¼ F mj ð21bÞ

S–C : W mj ¼ sinðmþ 0.25Þph� nm sinhðmþ 0.25Þph; nm ¼ sinðmþ 0.25Þp
sinhðmþ 0.25Þp ð21cÞ
Substitution of Eqs. (17), (18), (20), and (21) into the governing equations (6), (7) and the boundary con-
ditions (14) and (15), and then application of the Galerkin technique leads to a set of nonlinear algebraic
equations in terms of the unknown coefficients amj and bmj (m = 1, . . . ,M, j = 1, . . . ,N)
GðT ;DÞD ¼ UðT Þ ð22Þ

where D is an unknown vector which is composed of amj and bmj, G is the nonlinear matrix that is dependent
on both the temperature and D. The right-hand side term U comes from the thermally induced stress resul-
tants and bending moments in simply supported boundary conditions at straight edges h = 0, h0, and will
automatically vanish when the panel is isotropic where the stretching–bending coupling is absent, or when
the panel is clamped and only displacement boundary conditions are involved. It is obvious that the bifur-
cational thermal buckling will take place only when U = 0, otherwise transverse deflection will be induced,
irrespective of the magnitude of the temperature change.
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The thermal buckling temperature, when it exists, is determined from the nonlinear homogeneous
equation
Table
Comp
tempe

Presen

(M,N)

784.76
GðT ;DÞD ¼ 0 ð23Þ

by an iterative numerical procedure with the following steps.

(1.1) Solve the buckling temperature DTcr from Eq. (23) by using temperature-independent material pro-
perties, that is, the thermo-elastic properties at reference temperature T0.

(1.2) Update G by using the property values at T = T0 + DTcr to obtain a new buckling temperature.
(1.3) Repeat step (1.2) until the thermal buckling temperature converges to a prescribed error tolerance.

The nonlinear temperature–deflection curve, which is also known as the post-buckling equilibrium path,
is traced by two different iterative schemes depending on the presence ofU. When U = 0, the following iter-
ation process is applicable:

(2.1) Begin with the dimensionless deflection W/h = 0 at a specific point;
(2.2) Use the iterative procedures (1.1)–(1.3);
(2.3) Specify a new value of W/h;
(2.4) Calculate the thermo-elastic properties at T = T0 + DTcr, and scale up the buckling mode that is

obtained in step (2.2) to form a new G to determine the post-buckling temperature;
(2.5) Repeat step (2.4) until the post-buckling temperature converges to a prescribed error tolerance;
(2.6) Repeat steps (2.3)–(2.5) to obtain the post-buckling equilibrium path.

The modified Newton–Raphson technique is used in case of U 5 0, but the process is omitted here for
brevity.
4. Numerical results

As there are no suitable results on the thermo-mechanical buckling and post-buckling of FGM cylindri-
cal panels for direct comparison, thermal buckling of a clamped anti-symmetric angle-ply laminated cylin-
drical panel under a uniform temperature increment is solved and critical temperature results are compared
in Table 1 with the existing ones obtained by Chang and Chiu (1991) as the validation of the present anal-
ysis. The material properties are temperature independent in this instance, and are given as
E1=E0 ¼ 21; E2=E0 ¼ E3=E0 ¼ G12=E0 ¼ 1.7; G13=E0 ¼ 0.65; G23=E0 ¼ 0.639; E0 ¼ 106 psi

m12 ¼ m13 ¼ 0.21; m23 ¼ 0.33; a1 ¼ �0.21� 10�6=F; a2 ¼ a3 ¼ 10�6=F
The panel is fully clamped and immovable at all edges with lamination [±42.5�]3, and the geometry param-
eters are L/S = 1.0, S/R = 0.25 and S/h = 200. Good agreement is achieved when the number of grid points
1
arisons of buckling temperatures DTcr (F) for a clamped antisymmetric angle-ply cylindrical panel subjected to uniform
rature change

t Chang and Chiu (1991)

= (3,9) (M,N) = (5,13) (M,N) = (5,15) (M,N) = (7,19)

851.30 846.24 847.55 831.88



Table 2
Temperature-dependent thermo-elastic coefficients for silicon nitride and nickel

Thermo-elastic properties Material P�1 P0 P1 P2 P3

E (Pa) Silicon nitride 0 348.43e9 �3.070e�4 2.160e�7 �8.946e�11
Nickel 0 223.95e9 �2.794e�4 3.998e�9 0

m Silicon nitride 0 0.2400 0 0 0
Nickel 0 0.3100 0 0 0

a (1/K) Silicon nitride 0 5.8723e�6 9.095e�4 0 0
Nickel 0 9.9209e�6 8.705e�4 0 0
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N and the number of series termsM are increased to (N,M) P (15,5). Our solutions are slightly higher than
Chang and Chiu�s results because the higher order shear deformation shell theory, instead of classical shell
theory, was used in their work.

Parametric studies are then conducted to supply information on both the buckling temperature and the
post-buckling equilibrium paths of various FGM cylindrical shells with temperature-dependent material
properties when they are subjected to axial pre-stress and uniform temperature change. Silicon nitride
and nickel are chosen to be the constituent materials of the FGM panel, referred to as Si3N4/Ni. The tem-
perature-dependent material constants for Young�s modulus E, Poisson�s ratio m and the coefficient of ther-
mal expansion a are listed in Table 2. To highlight the effect of temperature-dependence of thermo-elastic
properties, comparisons are made between the solutions using temperature-dependent and temperature-
independent properties in all of the numerical examples (Tables 3, 4 and Figs. 2–9). In computation, the
temperature-independent properties are (Gauthier, 1995): E = 310 GPa, m = 0.24, a = 3.4 · 10�6 1/K for
silicon nitride and E = 204 GPa, m = 0.31, a = 13.2 · 10�6 1/K for nickel.

In what follows, a clockwise notation that starts from X = 0 is employed. ‘‘SCSC’’, for example, stands
for a panel simply supported at edges X = 0, L and clamped at edges h = 0, h0. Three axial loading cases are
considered in the analysis, i.e., (1) the panel is subjected to a tensile force (negative k1), (2) the panel is sub-
jected to a compressive force (positive k1), and (3) the panel is free from axial force (k1 = 0).

The error tolerance in the iteration process is defined as the relative difference between the two consec-
utive solutions
Table 3
Buckling temperature parameter kcr = a0 DTcr · 103 for clamped FGM cylindrical panels subjected to uniform axial load (S = 0.3 m,
L/S = 2.0, S/h = 100)

Material composition Temperature-dependent solutions Temperature-independent solutions

k1 = �200p2 k1 = 200p2 k1 = �200p2 k1 = 200p2

S/R = 0.3

Si3N4 3.1742 2.9445 3.7492 3.4393
n = 0.5 2.5941 2.4012 2.9739 2.7262
n = 2.0 2.3209 2.1373 2.6174 2.3888
n = 10.0 2.2018 2.0218 2.4628 2.2424
Nickel 2.0284 1.8866 2.2554 2.0829

S/R = 0.5

Si3N4 5.9231 5.6739 7.9259 7.5118
n = 0.5 4.9754 4.7585 6.6366 6.0295
n = 2.0 4.4242 4.2225 5.5009 5.2032
n = 10.0 4.1417 3.9467 5.0711 4.7919
Nickel 3.9086 3.728 4.7516 4.4948



Table 4
Buckling temperature parameter kcr = a0 DTcr · 103 for clamped FGM cylindrical panels with different in-plane boundary conditions
(S = 0.3 m, L/S = 2.0, S/h = 100)

Material composition Temperature-dependent solutions Temperature-independent solutions

In-plane case 1 In-plane case 2 In-plane case 1 In-plane case 2

S/R = 0.3

Si3N4 3.0514 2.3461 3.5828 2.6603
n = 0.5 2.4902 1.8536 2.8400 2.0472
n = 2.0 2.2242 1.6045 2.4965 1.7462
n = 10.0 2.1079 1.4851 2.3473 1.6041
Nickel 1.9440 1.3512 2.1525 1.4519

S/R = 0.5

Si3N4 5.8074 4.5307 7.7328 5.7037
n = 0.5 4.8753 3.6833 6.2098 4.4444
n = 2.0 4.3300 3.1749 5.3613 3.7286
n = 10.0 4.0497 2.9027 4.9386 3.3593
Nickel 3.8248 2.7005 4.6320 3.1027
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e ¼ DT ðiþ1Þ
cr � DT ðiÞ

cr

DT ðiÞ
cr












 6 10�4 ð24Þ
in the buckling analysis and
e ¼ DT ðiþ1Þ � DT ðiÞ

DT ðiÞ










 6 10�4 ð25Þ
in the post-buckling analysis.
Due to the stretching–bending coupling in the FGMs, only isotropic panels (the pure silicon nitride

panel and the pure nickel panel) and clamped graded panels are able to exhibit bifurcation-type buckling.
Tables 3 and 4 present the critical buckling temperature parameters kcr = DTcra0 · 103 for clamped FGM
cylindrical panels (S = 0.3 m, L/S = 2.0, S/h = 100) with different material composition and S/R = 0.3,0.5,
where a0 is the thermal expansion coefficient of nickel at T0 = 300 K, ‘‘Si3N4’’ and ‘‘nickel’’ represent iso-
tropic silicon nitride plate and pure nickel plate respectively and n = 0.5, 2.0, 10.0 are the volume fraction
index for graded panels. In Table 3, the panel is axially preloaded by axial tension k1 = �200p2 or axial
compression k1 = 200p2 on edges X = 0, L and is immovable at other edges. In Table 4, the axial load is
absent, and the results for FGM cylindrical panels with two different in-plane boundary conditions, which
are refereed to as in-plane case 1 (movable at X = 0, L and immovable at h = 0, h0) and in-plane case 2
(fully immovable on all edges), are compared.

As can be seen, the temperature-independent solutions are about 9–18% higher than the temperature-
dependent solutions, that is, the buckling temperature is considerably overestimated when the temperature-
dependence of the material properties is not taken into consideration. Fully metallic panels (pure nickel)
have the lowest buckling temperature and fully ceramic panels (pure Si3N4) have the largest buckling tem-
perature. The buckling temperature decreases as the volume fraction index n increases. This is because sil-
icon nitride has a much higher elastic modulus than nickel, and the volume percentage of silicon nitride
drops sharply at larger values of n. The effect of axial tensile pre-stress is seen to enhance the thermal buck-
ling load capacity of the panel, whereas the axial compressive load does the opposite. Moreover, the buck-
ling temperature and the difference between the temperature-dependent and temperature-independent
solutions both increase as the value of S/R becomes larger. As expected, the buckling temperature is smaller
when all of the edges are fully restrained against any in-plane displacements.
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Fig. 2. Effect of L/S ratio on the buckling temperature parameter kcr for FGM cylindrical panels: (a) isotropic panels; (b) graded
panels.
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Fig. 2 shows the variation of the buckling temperature with varying values of L/S for axially compressed
and fully clamped cylindrical panels. An increase in L/S significantly lowers both the buckling temperature
and the discrepancy between the temperature-dependent and temperature-independent solutions.

Typical results for the post-buckling analysis are shown in Figs. 3–9, in which the equilibrium paths are
presented for thermo-mechanically loaded FGM cylindrical panels that undergo post-buckling deforma-
tion. In these figures, w0/h denotes the dimensionless deflection at the point (L/2,h0/2), k0 = DTa0 · 103

is the dimensionless temperature parameter. Unless otherwise stated, the panel is geometrically perfect,
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simply supported on all edges, movable at X = 0, L and immovable at h = 0, h0, with L/S = 2.0 and
S/R = 0.3 and initially compressed by an axial force k1 = 200p2.

Fig. 3 gives the nonlinear temperature–deflection curves for isotropic Si3N4 and nickel panels and the
graded panels with volume fraction indices n = 0.5, 2.0, and 10.0 subjected to uniform temperature incre-
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ment only. Fig. 4 presents the results for the same panels when they are initially stressed by axial compres-
sion k1. The post-buckling paths of the simply supported graded panels are not bifurcational, and in the
presence of axial force, do not start from the coordinate origin due to the initial deflections induced by
k1. As expected, the post-buckling strength is the maximum for the isotropic Si3N4 panel and minimum
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for the pure nickel panel and degrades as the volume fraction index n increases. The post-buckling equilib-
rium path becomes lower when the temperature-dependent properties are taken into account. Moreover,
the application of an initial axial load makes the curves for isotropic panels in Fig. 4 somewhat different
from those in Fig. 3 at small deflections (w0/h 6 0.45–0.5).
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Fig. 5 evaluates the effect of geometric imperfection on the thermo-mechanical post-buckling equilibrium
paths of graded FGM cylindrical panels with n = 0.5 and 10.0. For the sake of simplicity, the initial geo-
metric imperfection W* is assumed to have the same shape as the additional deflection W and the imper-
fection parameter is defined as g ¼ 1þ 2 W �

W . This parameter is taken to be g = 1.2 for the imperfect panels
in this example. It is noted that in the presence of geometric imperfection the post-buckling equilibrium
path becomes lower.

The thermo-mechanical post-buckling behavior of FGM cylindrical panels with varying ratio of L/S is
compared in Fig. 6, in which curves 1a, 2a and 1b, 2b are the equilibrium paths for the cases of L/S = 1.5
and 2.5, respectively. The results show that the post-buckling strength declines significantly as L/S
increases.

The effect of flatness on the thermo-mechanical post-buckling behavior of FGM cylindrical panels is
shown in Fig. 7 by comparing the post-buckling temperature–deflection curves of panels with length-to-
radius ratios S/R = 0.2 and S/R = 0.5. The results show that the equilibrium path is very sensitive to panel
flatness. The panel with a flatted configuration (smaller length-to-radius ratio) has a much lower buckling
temperature and post-buckling curves than the one with a greater length-to-radius ratio.

Fig. 8 gives the thermo-mechanical post-buckling temperature–deflection relationships for FGM cylin-
drical panels with CCCC and SCSC boundary conditions. The post-buckling equilibrium paths for the fully
clamped panel are of bifurcation type, whereas those for the SCSC panels are not. The post-buckling tem-
perature difference between the temperature-dependent and temperature-independent solutions of the
CCCC panels is bigger than that of the SCSC panels. Moreover, the CCCC panel has greater post-buckling
load-carrying capacity than its SCSC counterpart.

It is observed that in both Figs. 7 and 8, curves 1a and 2a stop at lower values of w0/h. This is because the
post-buckling paths cannot be traced beyond those values due to the convergence problem in the iteration
process, indicating that the post-buckling paths do not exist when w0/h is larger than those values.

The influence of in-plane boundary condition is displayed in Fig. 9 by comparing the thermal post-
buckling equilibrium paths for FGM cylindrical panels with two types of in-plane displacement constraints.
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The results demonstrate that the panels with one pair of movable edges (in-plane case 1) have much higher
post-buckling load-carrying capacity than those immovable on all edges (in-plane case 2). This can be ex-
pected, as greater thermally induced compressive stresses will develop in the fully immovable panels, which
significantly weaken the structure stiffness.
5. Conclusions

The buckling and post-buckling behavior of cylindrical panels that are comprised of functionally graded
materials with temperature-dependent material properties and are subjected to a combination of an axial
force and a uniform temperature change have been investigated within the framework of the classical shell
theory with von-Karman–Donnell-type of kinematic nonlinearity. The material properties are assumed to
be the nonlinear function of temperature and graded in the thickness direction. The effect of initial geomet-
ric imperfection is also included in the analysis. A semi-analytical approach, together with an iterative
algorithm, is used as a nonlinear solution scheme to determine the critical buckling temperature and the
post-buckling temperature–deflection curves. The results show that both the buckling temperature and
the equilibrium path in the post-buckling regime are significantly over-predicted when the temperature-
dependence of the material properties is not taken into consideration. It is also confirmed that the buckling
and post-buckling behaviors of FGM cylindrical panels are greatly influenced by the volume fraction
index, the axial pre-stress, the out-of-boundary conditions, initial geometric imperfection, and panel
configuration.
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